
Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students 

Amelia S. Malone and Lynn S. Fuchs 

Vanderbilt University  

Inquiries should be sent to Amelia S. Malone, Vanderbilt University, Department of Special 

Education Box 228 Nashville, TN 37203-5721. amelia.malone@vanderbilt.edu  

This research was supported by Grant R324C100004 from the Institute of Education Sciences in 

the U.S. Department of Education to the University of Delaware with a subcontract to Vanderbilt 

University and by Award Number R24HD075443 and by Core Grant HD15052 from the Eunice 

Kennedy Shriver National Institute of Child Health & Human Development to Vanderbilt 

University. The content is solely the responsibility of the authors and does not necessarily 

represent the official views of the Institute of Education Sciences or the U.S. Department of 

Education or the Eunice Kennedy Shriver National Institute of Child Health & Human 

Development or the National Institutes of Health. 



Running Head: ORDERING ERROR PATTERNS 1

Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students 

Accepted December 30, 2015
Journal of Learning Disabilities 



ORDERING ERRORS 2

Abstract 
 

The 3 purposes of this study were to: (a) describe fraction ordering errors among at-risk 4th-grade 

students; (b) assess the effect of part-whole understanding and accuracy of fraction magnitude 

estimation on the probability of committing errors; and (c) examine the effect of students’ ability 

to explain comparing problems on the probability of committing errors. Students (n = 227) 

completed a 9-item ordering test. A high proportion (81%) of problems were completed 

incorrectly. Most (65% of) errors were due to students misapplying whole number logic to 

fractions. Fraction-magnitude estimation skill, but not part-whole understanding, significantly 

predicted the probability of committing this type of error. Implications for practice are discussed.  
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Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students 

Many students persistently misunderstand fractions and have difficulty assessing fraction 

magnitude (e.g., Brown & Quinn, 2007; U.S. Department of Education, 2008).	For example, on 

the 2013 NAEP assessment, 40% of fourth-grade students could not determine that thirds were 

bigger than fourths, fifths, and sixths. Similarly, 65% of eighth-grade students could not explain 

that ½ + 3/8 + 3/8 was greater than one. One reason students struggle with assessing fraction 

magnitude is that fractions have different properties than whole numbers. Whereas whole 

numbers are successive (e.g., the distance between 1 and 2 is the same as the distance between 

543 and 544) and discrete (e.g., there is only one whole number between 3 and 5), fractions are 

not successive (e.g., the distance between ¼ and 1/5 is greater than the distance between 1/6 and 

1/7) and they are not discrete (e.g., there is an infinite number of fractions between ¼ and 1/5 

[Vosniadou et al., 2008]). In addition, fractions have different calculation properties than whole 

numbers (e.g., multiplying two positive whole numbers yields a greater value whereas 

multiplying two positive proper fractions yields a smaller value). 

One common error students make is misapplying whole number logic to fractions; that is, 

they incorrectly apply whole number counting properties to fraction concepts (e.g., Ni & Zhou, 

2005). This is referred to as whole number bias (e.g., incorrectly assuming that 1/12 is larger 

than ½ because the whole number 12 is larger than 2; Ni & Zhou, 2005). Until the upper 

elementary grades, instruction primarily focuses on the one-to-one counting properties of whole 

numbers. The introduction of fractions poses newfound difficulties because rational numbers do 

not have the same properties as whole numbers. That is, when students encounter fractions, they 

fall back on whole number knowledge (which is the focus of the curriculum up until fourth 

grade) to make sense of magnitude (e.g., Geary, 2006; Ni & Zhou, 2005; Vamakoussi & 
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Vosniadou, 2010; Vosniadou, Vamvakoussi, & Skopeliti, 2008). Because fractions have 

different properties than whole numbers, students may have difficulty expanding their 

understanding of number representation when fractions are introduced in the upper elementary 

grades.  

Including rational numbers and whole numbers into a single numerical framework is “a 

process of progressively broadening the class of numbers that are understood to possess 

magnitudes and of learning the functions that connect that increasingly broad and varied set of 

numbers to their magnitudes” (Siegler, Thompson, & Schneider, 2011; p. 275). Students likely 

experience difficulty with fractions because they have difficulty in simultaneously considering 

the numerator and denominator when assessing magnitude. In this way, Siegler et al. hold that 

whole number knowledge does not necessarily interfere with fraction learning. But, because 

magnitude understanding unites both whole numbers and fractions, students should learn that 

fractions have magnitude and can be ordered, compared, and placed on the number line. Without 

explicitly teaching how to assess magnitude, students will likely struggle to consolidate 

properties of whole numbers and fractions.  

Typical instruction in the United States fails to emphasize how to conceptually assess 

fraction magnitude. As a result, students rely on whole number properties to determine fraction 

value and thus struggle to expand their concept of number to include fractions, which helps 

explain why misapplying whole number logic to fraction magnitude comparisons is so common. 

In the following sections of this introduction, we describe common error patterns when students 

assess fraction magnitude, and describe how the present study extends prior work.   

Common Error Patterns with Assessing Fraction Magnitude   



ORDERING ERRORS 5

 It is well documented that individuals have substantial difficulty assessing fraction 

magnitude (e.g., Bonato, Fabbri, Umilta, & Zorzi, 2007; Schneider & Siegler, 2010; Siegler et 

al., 2011). We located three studies that investigated the accuracy with which individuals 

compare fractions and the comparing error patterns on which problem solvers rely. Stafylidou 

and Vosniadou (2004) investigated explanatory frameworks for comparing and ordering 

fractions among 200 average-performing middle- and high-school students. One common 

misconception was the belief that a fraction is composed of two independent whole numbers 

(e.g., “the value of a fraction increases when the numbers that comprise it increase,” p. 507). 

That is, as the whole number values in the numerator or denominator increases, the value of the 

fraction also increases. Accordingly, many students ordered or compared fractions based on the 

whole number value in the numerator or the denominator (e.g., 2/6 > ½, which is incorrect).  

Another common misconception Stafylidou and Vosniadou (2004) found among students 

in their sample was the belief that the value of a fraction increases when the whole numbers that 

comprise it decrease. This somewhat more advanced misconception reflects some rudimentary 

understanding that fractions with smaller denominators have bigger parts, but lacks 

understanding that the numerator and denominator operate synergistically to determine fraction 

value. That is, the numerator and denominator are not independent whole numbers, but rather 

two numbers that form a single value, which can be represented on a number line. Authors found 

that these misconceptions were less common among the eighth-grade and high-school students in 

their study than they were among the fifth, sixth-, and seventh-grade students.  

Similar misconceptions about fraction values were found by DeWolf and Vosniadou 

(2011) among 28 adult undergraduate students enrolled at a prestigious university. The 

participants were presented with 40 fraction pairs on the computer and asked to determine which 
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fraction was bigger. Twenty of the fraction pairs were consistent with whole number ordering. 

That is, the larger of the two fractions was also the one with larger whole numbers in the 

numerator and denominator (e.g., 5/6 > ½). The other 20 fraction pairs were inconsistent with 

whole number ordering. That is, the larger of the two fractions had smaller whole numbers in the 

numerator and the denominator (e.g., 4/6 > 5/10). Accuracy and speed of response were superior 

for items that were consistent with whole number ordering than for items that were inconsistent 

with whole number ordering, which suggests that estimating fraction magnitude is difficult even 

for advanced students. This speaks to the difficulty of thinking about the numerator and 

denominator concurrently to assess a fraction’s value when the comparison is inconsistent with 

whole number knowledge.  

Like DeWolf and Vosniadou (2011), Meert, Grégoire, and Noël (2010) found that 

students were more accurate and quicker to respond when the fraction pairs were consistent with 

whole number ordering than inconsistent with whole number ordering. Average-achieving fifth- 

(n = 24) and seventh-grade (n = 44) students identified the larger value within 64 pairs of 

fractions. Thirty-two of the pairs had the same numerator (i.e., inconsistent with whole number 

ordering), and 32 pairs had the same denominator (i.e., consistent with whole number ordering). 

Seventh-grade students were more accurate and quicker to respond for both problem types than 

were fifth-grade students. However, the same numerator problems (i.e., inconsistent with whole 

number ordering) were difficult for both fifth- and seventh-grade students, as indicated by slower 

response times and decreased accuracy.  

The Present Study 

Across the age range studied in these studies, students demonstrated consistent whole 

number ordering errors when assessing fraction magnitude. Yet, we identified no prior study that 
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investigated error patterns among fourth-grade students, examined the error patterns of students 

at risk for mathematics difficulties, or used different types of fraction knowledge to predict the 

probability of committing these errors. Previous intervention research (e.g., Cramer, Post, & 

delMas, 2002; Fuchs et al., 2013; Fuchs et al., 2014; Fuchs, Malone, et al., 2015; Fuchs, 

Schumacher, et al., in press) has shown that teaching students how to assess fraction magnitude 

significantly improves their conceptual understanding of fractions, but none of these studies 

investigated how specific types of fraction knowledge predict at-risk students’ error patterns. As 

indicated in NAEP data (2013) and as revealed in the studies described above (DeWolf & 

Vosniadou, 2011; Meert et al., 2010; Stafylidou & Vosniadou, 2004), many students struggle 

with assessing fraction magnitude. Describing the frequency and types of errors among at-risk 

fourth graders has important implications for designing curriculum to improve students’ 

conceptual understanding of fractions.      

Hecht and Vagi (2012) found that fourth- and fifth-grade students with mathematics 

difficulties (i.e., scoring below the 25th percentile on a standardized mathematics test) had lower 

than expected procedural and conceptual knowledge about fractions compared to average-

achieving students. This is probably true among the present study’s at-risk sample. Lower 

conceptual knowledge likely leads to higher frequencies of errors than the average-achieving 

samples just reviewed (DeWolf & Vosniadou, 2011; Meert et al., 2010; Stafylidou & Vosniadou, 

2004). In the present study, risk was operationalized as scoring below the 35th percentile on a 

measure of whole number knowledge at the start of fourth grade (when fraction knowledge is 

insufficiently developed to screen on). Because the curriculum primarily focuses on whole 

number knowledge in grades K-3, students who continue to demonstrate difficulty with whole 

numbers in fourth grade will likely have difficulty understanding fraction concepts as they 
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attempt to expand their concept of number to include rational numbers.    

In the present study, we had three purposes. The first was to describe fraction ordering 

error patterns among fourth-grade students identified as at risk for developing mathematics 

difficulties. The sample included students from three different academic years over the period in 

which the school district moved toward implementation of the Common Core State Standards 

(CCSS; National Governors Association Center for Best Practices, 2013). This shift in time 

provides an interesting opportunity for description, because the CCSS emphasize fraction 

magnitude (e.g., ordering fractions from least to greatest), a skill with which many students 

struggle with (DeWolf & Vosniadou, 2011; Meert et al., 2010; NAEP, 2013; Stafylidou & 

Vosniadou, 2004). Despite this move toward implementation of CCSS, we hypothesized minimal 

improvement in fraction magnitude judgments among this at-risk sample. This expectation is 

based on findings by Fuchs et al. (2015), who found that, across three years of intervention 

research, the achievement gap on fractions performance widened between at-risk students and 

their not-at-risk classmates in the same district where the present study took place moved toward 

implementation of CCSS. This widening gap is likely due to the rigor of CCSS, affording greater 

learning outcomes for not-at-risk students, even as it posed specific difficulty for at-risk students 

who already struggle with foundational skills (Powell, Fuchs, & Fuchs, 2013). Specifically, low 

performing students tend to struggle with magnitude estimation (e.g., Fuchs et al., 2013; Fuchs et 

al., 2015; Mazzocco & Devlin, 2008), a core tenet of fraction learning outlined in the CCSS.   

Bolstering understanding of fraction magnitudes at fourth grade is important, because 

fraction knowledge has been found to be a unique predictor of future performance in algebra 

(Bailey, Hoard, Nugent, & Geary, 2012; Booth & Newton, 2012; Brown & Quinn, 2007; Siegler 

et al., 2012). In this study, we refer to errors in which students order fractions from least to 
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greatest based on the whole number values in the numerator and/or the denominator as whole 

number ordering errors (WN-ORs). We hypothesized that these errors were the most common 

ordering error among at-risk fourth graders and that the next most common pattern of error 

involved judgments about fraction magnitude based solely on the value of the denominator (i.e., 

students indicating that the fraction with the smallest denominator is the largest fraction and the 

fraction with the largest denominator is the smallest fraction without concurrently considering 

the value in the numerator; e.g., 5/8<3/4<½). In this study, we refer to this type of error as a 

smallest denominator – biggest fraction ordering error (SDBF-OR). This error is more advanced 

than whole number ordering errors, because it indicates rudimentary knowledge that the smaller 

denominator means the fraction has bigger parts. This misconception exemplifies the lack of 

appreciation that the numerator also factors in to the value of the fraction. We also expected to 

find random error. That is, errors that did not fit into a pattern. We refer to these errors at no-

category ordering errors (NC-ORs).  

The second purpose was to assess the effect of students’ part-whole understanding and 

accuracy of fraction-magnitude estimation (i.e., placement of fractions on the number line) on 

the probability of committing errors. These constructs were chosen as predictors of errors 

because each represents a key form of fraction understanding (e.g., Kilpatrick, Swafford, Findell, 

2001) and help explain individual differences in fraction competence (Hecht, Close, & Santiso, 

2003; Hecht & Vagi, 2010; Siegler et al., 2011). Each ordering problem could only have one 

outcome (i.e., each problem was correct or incorrect). If incorrect, only one error type was 

possible. Therefore, each of the error types (i.e., WN-OR, SDBF-OR, NC-OR) was analyzed 

with a separate statistical model. Note that the focus of the paper is on identifying pervasive 

patterns of errors among at-risk fourth-grade students. Therefore, we focus our discussion on 
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patterns of error (i.e., WN-ORs and SDBF-ORs). We include an analysis of accuracy and NC-

ORs for the readers’ reference.  

In this study, part-whole understanding was indexed by performance on a subset of 

released fraction items from the NAEP (U.S. Department of Education, 2010). Part-whole 

understanding emphasizes part to whole relationships. This type of fraction knowledge is often 

represented as shaded parts of a shape or as pieces of pizza (e.g. Charalambous & Pitta-Pantazi, 

2007). The curriculum in the district where this study took place primarily focuses on part-whole 

understanding, even as CCSS (2013) implementation occurred. Such understanding is 

foundational but not sufficient for developing an understanding of fraction magnitude (e.g., 

Charalambous & Pitta-Pantazi, 2007). Focusing solely on part-whole understanding does not 

allow students to expand their understanding of fractions to include the following: (a) fractions 

as division, (b) fractions as a unit of measure, (c) fractions as operators, and (d) fractions as 

ratios (Kieren, 1993). In addition, as Smith, Solomon, and Carey (2005) showed, students could 

not reliably use part-whole representations to judge the size of non-unit fractions. Therefore, 

focusing on part-whole understanding only partially addresses the fractions as units of measure 

construct.  

For example, Smith, Solomon, and Carey (2005) documented that students could 

accurately judge the relative size of unit fractions (a fraction with 1 in the numerator) using part-

whole explanations but were unable to accurately answer other questions about fraction-

magnitude properties (e.g., when you multiply two fractions, the amount gets smaller). Because 

part-whole understanding provides an inadequate basis for succeeding with comparisons among 

non-unit fractions (Smith et al., 2005), we hypothesized that part-whole understanding is not a 

significant predictor of committing an ordering error when students’ accuracy of fraction-
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magnitude estimation	is controlled for in the model.   

Fraction-magnitude estimation was indexed by the accuracy with which students placed 

fractions on the 0-2 number line. The ability to accurately place fractions on the number line 

indexes students’ understanding that fractions have magnitude and can be ordered and compared 

(e.g., Siegler et al., 2011; Wu, 2008). We expected superior accuracy on number line to 

significantly predict the probability of committing SDBF-ORs. In the first year of a strong focus 

on fraction learning (i.e., fourth-grade), at-risk students likely do not have advanced 

understanding of fraction magnitude. Therefore, an increase in SDBF-ORs concurrent with an 

increase in accuracy of fraction-magnitude estimation may represent “a transitory phase in the 

process of fraction learning” and reflect the difficulties students have when they take on new 

information about fractions (Stafylidou & Vosniadou, 2004, p. 512). By contrast, we expected an 

inverse relation between fraction-magnitude estimation and the probability of committing a WN-

OR. That is, the greater students’ accuracy with placing fractions on the number line, the less 

likely they were to commit a WN-OR.  

To extend the focus further, our third purpose was to describe how students’ verbal 

explanations related to error patterns. Students in Fuchs, Malone et al. (2015) completed an 

assessment that probed their understanding of fraction magnitude more deeply, by asking them to 

provide explanations for how they compared nine pairs of fractions. We expected students’ 

ability to write sophisticated explanations to decrease the probability of committing WN-ORs 

and SDBF-ORs. This hypothesis is consistent with previous research that the ability to construct 

sound explanations is correlated with higher mathematics achievement, thus decreasing errors 

(e.g., Rittle-Johnson, 2006; Wong, Lawson, and Keeves, 2002). In addition, Fuchs, Malone et al. 

found that a 10-min self-explaining condition, which provided explicit instruction on providing 
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explanations on fraction comparison problems, significantly increased students’ fraction 

comparison accuracy compared to the other intervention condition (ES = .43). In this study, 

Fuchs, Malone et al. compared two intervention conditions – both conditions received the same 

multi-component fraction intervention focusing on the measurement interpretation of fractions. 

The only difference between the two conditions was the 10-min activity: One condition received 

support self-explaining and the other learned to solve multiplicative word problems.  

Method 

Participants were 227 at-risk fourth-grade students. Risk was defined as scoring below 

the 35th percentile on a measure of whole number knowledge (Wide Range Achievement Test–4 

[WRAT-4]; Wilkinson, 2008). The 227 students were from three Cohorts within three large 

randomized-control trials, in which these students were randomly assigned to intervention or 

control. The present study relied exclusively on the control group (i.e., those that did not receive 

intervention), because intervention was designed to disrupt the developmental pattern expected 

for these at-risk students. Cohorts 1, 2, and 3 included 84, 72, and 71 students, respectively. The 

present study added the analysis of error types to previous reports based on the full sample 

(Fuchs et al., 2014, 2015, in press), and results presented here do not overlap with those 

described in previous reports.  

Screening Measure 

WRAT-4-Arithmetic includes 40 problems of increasing difficulty. At fourth grade, it 

primarily assesses students’ proficiency with whole number computation skill, and includes 37 

computation problems (addition, subtraction, multiplication, and division) and three estimation 

problems. Alpha for the present sample was .76 (Alpha, estimated on a larger sample drawn from 

the same population, was .85.) 
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Fraction Measures  

 Ordering fractions. Ordering Fractions is a subtest from the Fraction Battery-2012-

revised (Schumacher, Namkung, Malone, & Fuchs, 2012), and requires students to order nine 

sets of three fractions from least to greatest. Three problems have the same numerator (and 

different denominators) and six have different numerators and different denominators. Alpha for 

the present sample was .69. (Alpha, estimated on a larger sample drawn from the same 

population, was .84.)  

Coding of ordering errors. Each item on each student’s test was first coded for accuracy. 

If the student answered a problem incorrectly, their answer was assigned an error type. See Table 

1 for the coding sheet and error possibilities by problem.  

There were three examples of WN-ORs depending on the problem. The first example 

included incorrectly ordering the fractions from least to greatest based on the whole number 

value in the numerator and denominator. That is, students would get the same incorrect answer 

whether they ordered the three fractions from least to greatest based on the whole number in the 

numerator or the denominator (e.g., ½<2/6<5/8). The second example included incorrectly 

ordering the fractions from least to greatest based on the whole number value in the denominator 

(i.e., same numerator problems). Students ordered the whole numbers in the denominator from 

least to greatest (e.g., ½<1/5<1/12). Students did not demonstrate an understanding that when a 

unit is divided into more parts (i.e., a bigger denominator), each of the parts gets smaller. The 

third example included incorrectly ordering the fractions from least to greatest based on the 

whole number value in the numerator (e.g., ½<2/8<¾). 

 SDBF-ORs occurred when students incorrectly ordered the three fractions from least to 

greatest considering the denominator (i.e., how many equal parts the unit is divided into) but not 
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the numerator (i.e., how many equal parts are in the fraction). For example, for 3/10, 7/12, and 

½, students would incorrectly order them 7/12<3/10<½. That is, students assumed that the 

smaller the denominator, the bigger the fraction magnitude. That is, a fraction with a small 

denominator is divided into bigger parts, but a student must also consider how many parts (i.e., 

the numerator) the fraction has to determine value. This error could occur on five of the nine 

problems (see Table 1).  

To ensure that SDBF-ORs were consistent with how students understood fractions, this 

error was only coded as present if students also got all three of the same numerator problems 

(different denominators) correct on the test. Accuracy on the same numerator problems indicated 

that students understood that as the denominator gets smaller, the size of the parts gets bigger 

(e.g., ½>1/5 because halves are bigger than fifths). However, they could not transfer this 

knowledge to a set of fractions that had different numerators and different denominators and 

failed to account for the number of parts when ordering the fractions. If students did not get the 

same numerator problems correct, the coder could not assume that students had an understanding 

about how the denominator affects the size of the fraction.   

 If a student’s answer did not fit into any category, their error was coded as NC-OR. No 

category errors typically included students writing the wrong fractions in the blanks, or writing 

the same fraction twice (therefore, an error type could not be assigned). If students did not 

attempt the problem, this was also coded. Two independent coders scored all of the tests and 

entered the data. On the first scoring attempt, coders scored the tests with 98.65% agreement. All 

discrepancies were discussed and resolved.  

Part-whole understanding. To index part-whole understanding, we relied on 8 released 

fourth- and eighth-grade items from the National Assessment of Education Progress (NAEP: 
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U.S. Department of Education, 2010). Seven questions ask students to identify or write fractions 

using a picture, and one question assesses students’ part-whole understanding with a word 

problem. The maximum score for the part-whole items is 9. Alpha for the present sample was 

.65. (Alpha, estimated on a larger sample drawn from the same population, was .71.) 

Fraction-magnitude estimation. Fraction Number Line (Hamlett, Schumacher, & 

Fuchs, 2011, adapted from Siegler et al., 2011) requires students to place proper fractions, 

improper fractions, and mixed numbers on a 0-2 number line. Students are presented with a 

number line on a computer screen and instructed to place the fraction where they estimate it 

goes. The following fractions are presented in random order: 12/13, 7/9, 5/6, ¼, 2/3, ½, 1/19, 3/8, 

7/4, 3/2, 4/3, 7/6, 15/8, 1 1/8, 1 1/5, 1 5/6, 1 2/4, 1 11/12, 5/5, and 1. Scores reflect students’ 

percentage of absolute error: the difference between where the student placed the fraction and 

where it actually goes, averaged across the items and then multiplied by 100. Because it was a 0-

2 number line, we then divided scores by 2 to obtain percentage of absolute error. Lower scores 

indicate greater accuracy. Therefore, students’ scores were multiplied by -1 so a positive relation 

between number line and the outcome reflected superior performance. Alpha was .85 and test-

retest reliability estimated with Cohort 2 was .80.   

(Note that in the initial analysis, we also used a subset of magnitude items from NAEP as 

a predictor of errors. This subset of 11 items require students to order fractions, compare 

fractions, write equivalent fractions, and to identify a fraction on the number line. However, 

because these items were closely aligned with the outcome measure (i.e., ordering fractions), we 

decided to drop it as a predictor in this report. Results paralleled those from the number line).  
 

Verbal explanations. Explaining Comparing Problems (Cohort 3 only), from the 

Fraction Battery-2013-revised (Schumacher, Namkung, Malone, & Fuchs, 2013), requires 
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students to explain why fractions are greater than or less than another fraction. Students place the 

greater than or less than sign between the two fractions and then write an explanation for and 

draw a picture to show how to think about the comparison in values and why their answer makes 

sense. There are nine items: Three have the same numerator (and different denominators), three 

have the same denominator (and different numerators), and three require students to compare a 

fraction to ½. We chose these items because they represent a range of comparing types 

(including comparing to a benchmark). Scoring awards credit for four components of sound 

explanations. Each component is either present or absent, and each component is weighted to 

account for the sophistication of the explanation.  

The first component indexes the accuracy of sign placement between the two fractions 

being compared (e.g., 4/5 > 4/8). Students earn 1 point if the sign is correct. The second and third 

components assess whether students demonstrate an understanding of how the numerator and 

denominator work together to make an amount. Because these components indicate a more 

advanced understanding of fractions, they are weighted more heavily. Students must demonstrate 

that the (a) numerator indicates the number of parts and (b) denominator indicates the size of the 

parts. These two components are scored independently, and students receive 2 points if the 

component is present, and 0 points if the component is not present. For example, when 

comparing 4/5 and 4/8, we awarded 4 points for the following: “Both fractions have the same 

number of parts, but fifths are bigger than eighths so 4/5 is greater than 4/8.”  

 The last component assesses the tenability of a picture the student draws to support the 

verbal explanation. A correct picture includes drawing two units the same size (e.g., rectangles 

that start and end at the same place), correctly dividing the unit into equal parts (the 

denominator), and correctly shading in the appropriate number of parts (the numerator). This 
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component is awarded 1 point if present. The maximum score of each of the nine items is 6 

points, for a maximum total score of 54. Two independent coders scored all of the tests with 

98.08% agreement. All discrepancies were discussed and resolved. Alpha, estimated on a larger 

sample drawn from the same population, was .91.  

Fraction Instruction in the Classroom  

The district uses enVision Math, which includes two units on fractions (Foresman-

Addison Wesley, 2011b). Fraction content includes adding and subtracting, constructing 

equivalent fractions, word problems, and explaining concepts using words and pictures. 

Instruction largely relies on part-whole understanding and procedures. Based on a curriculum 

analysis (Malone & Loehr, manuscript in preparation), fourth-grade EnVision Math primarily 

teaches comparing magnitudes using equal shares (with pictures) and comparing rules (e.g., if 

two fractions have the same denominator, the one with a bigger numerator is the bigger fraction). 

We only found 1 instance where the instructional manual used number lines to teach comparing 

fraction magnitudes.  

 Supplemental survey data about classroom instruction were also collected for Cohorts 2 

and 3. We first determined what teachers relied on for fraction instruction (the mean percentage 

of instructional time reported by Cohort 2 and Cohort 3 is provided in parentheses): the textbook 

only (2% and 0%), a combination of the textbook and CCSS (72% and 85%), CCSS only (26% 

and 13%), or other (0% and 2%). We then asked teachers what percentage of instructional time 

they spent teaching how to compare fractions using the following (the mean percentage of 

instructional time reported by Cohort 2 and Cohort 3 is provided in parentheses): (a) cross 

multiplying (12% and 21.5%), (b) number lines (14% and 12%), (c) benchmark fractions (10% 

ad 13%), (d) finding common denominators (27% and 21%), (e) drawing a picture of each 
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fraction (19% and 15%), (f) reference manipulatives (7% and 7%), (g) thinking about the 

meaning of the numerator and denominator (8% and 8%), and (h) other (3% and 2.5%).  

Procedure 

Students in Cohorts 1, 2, and 3 were screened with the WRAT-4 in the fall of fourth 

grade (2012, 2013, and 2014, respectively). They completed the Ordering Fractions, Fraction 

Number Line, NAEP, and Explaining Comparing Problems (Cohort 3 only) measures in the 

spring of fourth grade, after fraction instruction in their classroom had occurred. Students in 

Cohorts 1 and 2 took the tests in a whole-class setting; Cohort 3 took the tests in small groups of 

two to six students.  

Testers were graduate research assistants employed by a local university, all of whom 

received training on testing during two 4-hour sessions. RAs practiced administering the tests 

and passed a fidelity check before administering tests in schools. For each test in each year of the 

study, two independent research assistants scored and entered all data. As previously indicated, 

all scoring discrepancies were discussed and resolved.  

Data Analysis  

Data analysis included three steps. The first was to determine how accurately students 

ordered fractions and how frequently they committed errors. The second step included running 

three sets of cross-classified random-effects models (CCREM). (Note that we include analyses of 

accuracy and NC-ORs, but the focus of the paper is assessing individual differences in patterns 

of error among at-risk fourth-grade students.)	The logistic regression CCREMs were run using 

the lme4 command in R (Bates et al., 2013). The data structure included three levels. Problem-

by-problem student responses were at Level 1. Because each student answered the same nine 
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problems, responses were cross-classified by student and problem at Level 2. Students were also 

nested within Cohort at Level 3. See Figure 1 for a depiction of the data structure.  

Students are likely to demonstrate a consistent error pattern throughout the test, and 

including the cross-classified term accounts for this fact. The intra-class correlation coefficient 

for CCREMs indicates the degree to which student variance is conditional on problem variance, 

and vice versa (Cho & Rabe-Hesketh, 2011). Baayen, Davidson, and Bates (2008) provide a 

detailed analysis of how CCREM are advantageous for considering both student-specific and 

item-specific effects. By using a student/item cross-classified term, we can control the fact that 

an individual student is more likely to answer similarly across items than another student. The 

authors point out that “no two brains are the same, and that different brains have different 

developmental histories (p. 407).” Without including a cross-classified student-by-item term, we 

run the risk of overinflating the variance components due to both student and item (Baayen, 

Davidon, & Bates, 2008). Note that all of the analyses reported are student-level analyses. We 

simply take item-level variance into account in each model. That is, including the item and 

student cross-classified term accounts for the fact that no two brains are the same. This type of 

model has been used successfully in the reading research literature, with similar data structure 

(e.g., Gilbert, Compton, & Kearns, 2008). We calculated the intra-class correlation (ICC) for the 

empty model for accuracy, using the following formula (Snijders & Bosker, 2012):  

 I 


0
2


0
2 

 2

3

  

The ICC for student was .58, which means that a substantial proportion of variance in responses 

is due to between-student differences. The ICC for problem was <.001, which means that 

virtually no variance in responses is due to between-problem differences. Note that the ICC for 
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problem without accounting for between-student differences was .14, meaning a substantial 

proportion of between-problem differences is due to student variance.  

We also conducted a comparison of two empty models for accuracy. Model 1 accounted 

for the cross-classified person-level random effects term. Model 2 did not account for the cross-

classified term. The decrease in deviance between the two models was 36.44, which is 

significant (p < .001) on a chi-squared distribution with df = 1. We therefore included the cross-

classified term. Because each student answered the same set of 9 problems (at the same level), 

this is included as a person-level crossed random effect. 

The first set of CCREMs assessed the effect of Cohort membership (Cohort 2 served as 

the referent group for this analysis) on accuracy, WN-ORs, SDBF-ORs, and NC-ORs. The 

second set of CCREMs assessed whether part-whole understanding (i.e., NAEP part-whole 

items) and accuracy of fraction-magnitude estimation (i.e., number line) predicted accuracy and 

the probability of committing a WN-OR, SDBF-OR, or NC-OR. Because the two constructs are 

related (r = .32,  p  = .01), we controlled for both domain-specific tasks in the models to assess 

the contribution that one type of fraction understanding makes above and beyond the other. To 

make the intercept interpretable, all of the student-level predictors were centered at their 

respective means. Therefore, the intercept could be interpreted as the probability of committing 

an error at the predictors’ respective means.  

The full sample included 2,043 responses. However, because the purpose of analyzing 

errors was to compare the probability of committing one error over another error, analysis of 

these errors excluded correct answers from their respective models. Of the 2,043 responses that 

could have WN-ORs or NC-ORs, 379 were correctly answered. Therefore, the total sample for 

the WN-OR and NC-OR outcomes included 1,664 responses. That is, for example, students 
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either committed a WN-OR or some other error (i.e., SDBF-OR, NC-OR, or did not attempt the 

problem). Of the 1,135 responses that could have SDBF-ORs (this error could only occur on five 

of the nine ordering problems), 85 were correctly answered. That is, students either committed a 

SDBF-OR or some other error (i.e., WN-OR, NC-OR, or did not attempt the problem). 

Therefore, the total sample for  SDBF-ORs included 1,050 responses.  

The third set of CCREMs assessed whether students’ ability to explain comparing 

problems (Cohort 3 only; n = 71 students) significantly predicted the probability of committing a 

WN-OR (n = 513 responses), a SDBF-OR (n = 322 responses), or a NC-OR (n = 513 responses).  

To contextualize results, the final (third overall) step was to convert all significant logit 

coefficients to probabilities using the following logit link formula (Snijders & Bosker, 2012):  

P 
1

1 e
 logit( i[ jk ] )

 

We calculated these probabilities for the student-level predictors at the following values: one 

standard deviation below the mean, at the mean (i.e., the intercept), one standard deviation above 

the mean, and two standard deviations above the mean. This allowed us to assess how the 

probability of correctly answering a problem or committing an error changed as a function of an 

increase or decrease in part-whole understanding and accuracy of fraction-magnitude estimation 

across the distribution of scores.  

Results 

Of the 2,043 responses, students correctly answered 379 of the items (i.e., 19%). The 

most common ordering error was WN-ORs. Of the 1,664 responses with errors, 1,078 had WN-

ORs (i.e., 65%). The next most common error was SDBF-ORs. Of the 1,050 responses that could 

have this error (this error could only occur on five of the nine ordering problems), 190 had 

SDBF-ORs (i.e., 18%). Students also committed random errors: They wrote the incorrect 
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fraction or the same fraction twice (i.e., 5% of errors) or committed a NC-OR that did not fit a 

pattern (i.e., 17% of errors). See Table 2 for frequencies of correct answers and errors by Cohort 

and across the sample. See Table 3 for proportions and standard deviations of correct answers 

and errors for students by problem. 

Effect of Cohort on Accuracy and Errors 

 There were no significant differences among Cohorts on accuracy or the frequency of 

errors. See Table 4 for a summary of the CCREM results. Therefore, Cohort membership (i.e., 

Level 3) was dropped from subsequent analyses.   

Effect of Part-Whole Understanding and Accuracy of Fraction-Magnitude Estimation on 

Accuracy and Errors  

See Table 5 for a summary of the CCREM results. Controlling for number line 

performance, performance on NAEP part-whole items (M = 6.33, SD = 1.50) failed to predict the 

probability of committing a WN-OR, p = .079. By contrast, performance on number line (M = 

0.52, SD = 0.14), while controlling for performance on the NAEP part-whole items, significantly 

predicted the probability of committing a WN-OR, p < .001. To gain a better understanding of 

this significant effect, we calculated the probability of committing a WN-OR when a student 

performed one standard deviation below the mean (.954), one standard deviation above the mean 

(.242), and two standard deviations above the mean (.038) on number line while holding part-

whole understanding constant at the mean.  

Performance on NAEP part-whole items and number line did not significantly predict the 

probability of committing a SDBF-OR or NC-OR. Because none of the predictors was 

statistically significant, we did not calculate probabilities.  

Effect of Students’ Explanations (Cohort 3 Only) on Errors 
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See Table 6 for a summary of the CCREM results. The component scores for the 

explanation test were as follows: (a) correct sign placement (M = 5.28, SD = 2.07); (b) number of 

parts (M = 0.45, SD = 1.18); (c) size of parts (M = 0.34, SD = 0.96); and (d) correct drawing (M 

= 0.61, SD = 1.74). Students’ ability to explain comparing problems (M = 6.97, SD = 4.00) 

significantly predicted the probability of committing a WN-OR. To gain a better understanding 

of this significant effect, we calculated the probability of committing a WN-OR when students 

performed one standard deviation below the mean (>.999), one standard deviation above the 

mean (.269), and two standard deviations above the mean (.001) on explanations.  

By contrast, students’ explanations did not significantly predict the probability of 

committing a SDBF-OR (p = .065) or a NC-OR (p = .78).	Therefore, we did not calculate 

probabilities.  

Discussion 

There were three purposes to the present study. First, we described fraction ordering error 

patterns among fourth-grade students at risk for developing mathematics difficulties. Second, we 

assessed whether part-whole understanding and fraction-magnitude estimation significantly 

predicted the probability of committing an error. (Note that the focus of the paper was on 

pervasive patterns of errors among at-risk fourth-grade students. Therefore, we focus our 

discussion on these patterns of error identified in the sample [i.e., WN-ORs and SDBF-ORs]). 

Third, we explored whether students’ verbal explanation of comparing problems predicted the 

probability of committing an error.  

Consistent with previous research (DeWolf & Vosniadou, 2011; Meert et al., 2010; 

Stafylidou & Vosniadou, 2004), students in the present study demonstrated substantial difficulty 

assessing fraction magnitude, with no significant differences among Cohorts on accuracy or error 
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patterns for these low performers. Across years, after their fourth-grade year of focused 

classroom instruction on fractions, this sample of at-risk fourth-grade students correctly ordered 

fractions on only 19% of problems. We identified two error patterns. WN-ORs occurred when 

students ordered the fractions from least to greatest based on whole number values. This error 

was pervasive among the sample of at-risk fourth-grade students. The majority of students 

ordered fractions from least to greatest based on the whole number values in the numerator or 

denominator, and there were no significant differences among Cohorts on the frequency of this 

error. Of the errors made, 65% were WN-ORs.  

SDBF-ORs occurred on problems with different numerators and different denominators, 

in which students ordering the fractions from least to greatest based on the size of the parts (i.e., 

denominator), without concurrently considering the number of parts (i.e., numerator) to 

determine the fraction’s value. This error, which was more advanced than simply attending to the 

whole number values in the numerator or denominator, did not occur as frequently as expected. 

Of the errors made on the five problems with potential for this error (i.e., 1,050 responses), 18% 

(i.e., 190) were SDBF-ORs. The low frequency of this error may help to explain why accuracy of 

fraction-magnitude estimation failed to predict the probability of committing SDBF-ORs. 

However, this type of error may represent a transitional phase as students attempt to assimilate 

fractions into their numerical framework (Stafylidou & Vosniadou, 2004). Because students 

made very few of these errors, we could not examine the tenability of this hypothesis. Future 

research should investigate whether this type of error represents a transition from operating with 

whole number bias to assimilating fractions into a single numerical framework.  

Because WN-ORs were the most pervasive error in the sample, we center the majority of 

the discussion on how accuracy of fraction-magnitude estimation (i.e., number line performance) 
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relates to the probability of committing WN-ORs. We then discuss practical implications and 

curriculum recommendations as they relate to remediating WN-ORs, followed by a discussion of 

study limitations.  

As expected, part-whole understanding failed to predict the probability of committing 

WN-ORs when accuracy of fraction-magnitude estimation was controlled. That is, increased 

part-whole understanding did not significantly decrease the probability of committing a WN-OR. 

Based on these results, it appears that only focusing on teaching part-whole understanding will 

not significantly decrease the likelihood of operating with whole number bias.  

Accuracy of fraction-magnitude estimation, on the other hand, did significantly predict 

the probability of committing a WN-OR. Superior number-line performance dramatically 

decreased WN-ORs. When students performed one standard deviation below the mean on 

number line, the probability of committing a WN-OR was 95%; the probability of committing 

this error decreased to 4% when students performed two standard deviations above the mean 

(holding part-whole understanding constant at the mean). Twenty students in the sample 

performed one standard deviation below the mean, and seven students performed two standard 

deviations above the mean.  

It should be noted that students who tended to operate with whole number bias on 

ordering also had both poor part-whole understanding (r = -.23, p = .01) and poor skill in fraction 

magnitude estimation (r =-.13, p = .01). That is, students who committed WN-ORs (a systematic 

rather than random error) demonstrated a lack of fraction understanding across both constructs. 

But, as students’ performance on both tasks increased, the likelihood of correctly answering an 

ordering problem also increased. It is possible that inhibiting whole number bias is key to 

increasing fraction magnitude understanding, and increasing accuracy across a range of fraction 
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tasks. To assist students with this, effective fraction instruction should emphasize magnitude 

understanding (e.g., Booth & Siegler, 2006; Siegler et al., 2011). This is corroborated by five 

years of intervention research (Fuchs et al., 2013; 2014; in press; 2015; in preparation) and an 

error analysis of whole number bias with calculations (Schumacher & Malone, in preparation) 

that increasing students’ understanding of fraction magnitude (i.e., measurement understanding) 

with explicit instruction significantly improves performance across a range of fraction measures 

and decreases whole number bias.   

Students’ ability to explain comparing problems also significantly decreased the 

probability of committing WN-ORs. For explaining comparing problems (Cohort 3 only), the 

probability of committing a WN-OR was 99.99% when students performed one standard 

deviation below the mean; the probability decreased to 0.1% at two standard deviations above 

the mean. Seven students performed one standard deviation below the mean, and five students 

performed two standard deviations above the mean. Results suggest the importance of 

constructing sophisticated explanations for comparison problems for decreasing the probability 

of operating with whole number bias when ordering fractions from least to greatest.  

Although a few students were capable of writing sophisticated explanations, the majority 

of students in this sample (Cohort 3 only) had substantial difficulty verbally explaining how to 

compare fractions as indicated by the mean on this measure. As reported in the literature (e.g., 

Stigler & Perry, 1988; Yang & Cobb, 1995), many American students (not just low performing 

students) struggle to construct verbal explanations. For example, in a descriptive study 

comparing American and Chinese students’ learning of place-value, Yang and Cobb (1995) 

found that Chinese students constructed far superior verbal explanations about mathematics 

concepts than their American counterparts. In a similar descriptive study comparing mathematics 
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classroom discourse, Stigler and Perry (1988) showed that Japanese teachers devoted the 

majority of class time on modeling how to explain the problem-solving process. Teachers 

stressed the importance of thinking through the correct answer. By contrast, American teachers 

spent little time on explanations. Results from the present study reflect this, as indicated by the 

low scores on explaining comparing problems. Of a possible 54 points on the test, the average 

explanation score was only 7 points. There is a long history of achievement discrepancies 

between the United States and Asian countries in mathematics (e.g., Provasnik et al., 2012). The 

ability to explain concepts and connect ideas in mathematics may be a key factor explaining this 

achievement gap (e.g., Stigler & Perry, 1988).  

Not only did students fail to provide satisfactory verbal explanations, many of the 

explanations provided were based on whole number knowledge. In fact, 38% of the explanations 

provided on the explaining comparing problems measure included incorrect whole number 

explanations. These problematic whole number explanations included examples such as stating 

that “3/6 is bigger than ¾ because 6 is bigger than 4” or cross-multiplying and comparing whole 

number values to assess magnitude. The prevalence of these types of whole number explanations 

indicates students have deep misconceptions about fraction properties. In the next section, we 

discuss recommendations for mitigating these misconceptions.   

Instructional Implications 

One of the CCSS (2013) fraction standards requires students to “extend core 

understanding of fraction equivalence and ordering” (www.corestandards.org). Results from this 

study suggest that accurately estimating fraction magnitude and providing sophisticated verbal 

explanations may be key components in increasing students’ conceptual understanding of 

fractions. This is corroborated by previous research highlighting the importance of explicitly 
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teaching how to assess fraction magnitude (e.g., Cramer et al., 2003; Fuchs et al., 2013; Fuchs et 

al., 2014; Fuchs et al., 2015; Fuchs et al., in press; Siegler et al., 2011; Smith, 2002), and using 

the number line as a representational tool for teaching fraction-magnitude topics (e.g., Keijzer & 

Terwel, 2003).  

In four years of intervention research, the series of intervention studies conducted by the 

Fuchs et al. research group (2013, 2014, 2015, in press) indicated that at-risk fourth-grade 

students who received intervention emphasizing fraction magnitude (i.e., ordering fractions, 

comparing fractions, and placing fractions on the number line) significantly outperformed 

control students on these topics. In fact, the treatment students from these cited studies made 

very few ordering errors. Given there were no differences among Cohorts on accuracy or error 

patterns in the present study as the district moved toward CCSS (2013) implementation, it 

appears that the CCSS are not being effectively implemented in the classrooms instruction 

provided to students with risk for mathematics difficulty. This present sample of at-risk students, 

who received their fraction instruction within general education classrooms, had limited 

understanding of fraction magnitude. 

This has important implications. Ramping up mathematics standards does not ensure 

higher achievement, especially for low performers. In fact, these standards may pose substantial 

difficulty for at-risk students because these students lack the foundational skills necessary to 

achieve the depth of knowledge the CCSS (2013) attempts to instill (Powell, et al., 2013). In the 

era of CCSS, educators must be aware that at-risk students may need more specialized and 

individualized intervention to fulfill these more rigorous standards (Fuchs et al., 2015; Powell et 

al., 2013). Otherwise, at-risk students may be left behind (Fuchs et al., 2015).  

Before CCSS (2013) were implemented in the district where this study took place, Fuchs 
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et al. (2013, 2014) reported that the achievement gap between a sample of at-risk control 

students (similar to those included in the present study’s sample) and a sample of low-risk 

students (i.e., average-achieving classmates) was approximately one standard deviation on a set 

of 18 items from the NAEP that probed both part-whole and fraction-magnitude understanding. 

(Average-achieving student data were not collected for number line performance.) This gap 

widened for at-risk children who received fraction instruction in their classrooms as the district 

moved toward implementation of the CCSS. This widening achievement gap stands in stark 

contrast to the not-at-risk students’ fraction understanding (indexed by NAEP), which 

substantially increased each year (Fuchs et al., 2015).  

Moreover, as at-risk students who did not receive specialized fraction intervention fell 

further and further behind each year the standards became more rigorous, the achievement gap 

was nearly eliminated for at-risk children who received specialized fraction intervention 

specifically designed to disrupt the developmental pattern of mathematics difficulty. In these 

studies, intervention included explicitly teaching conceptual comparing strategies, providing 

adequate scaffolding for teaching these concepts, and ensuring there was adequate support for 

developing and maintaining foundational mathematics skills such as addition and multiplication. 

Part-whole understanding was a component of instruction, but was not the focus. 

On the other hand, instruction in the general education classroom (as indicated by 

teachers’ report on how they teach fractions) primarily focuses on part-whole understanding and 

procedural methods for assessing magnitude. Results from the present study suggest that part-

whole understanding is insufficient for reducing the likelihood of operating with whole number 

bias. Without emphasizing that fractions have magnitude and can be ordered, compared, and 

placed on the number line, students resort to the only knowledge they have: whole number 
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knowledge. Operating with whole number bias can have a substantial negative effect on 

students’ ability to succeed in higher-level mathematics courses such as algebra (Bailey et al., 

2012; Booth & Newton, 2012; Brown & Quinn, 2007; Siegler et al., 2011).  

It could be that American teachers struggle to teach how to assess fraction magnitude 

because they themselves have insufficient fraction understanding. For example, in a descriptive 

study comparing American and Japanese fourth-grade teachers’ understanding of rational 

numbers, Moseley, Okamoto, and Ishida (2007) found that American teachers relied almost 

exclusively on part-whole relationships to describe fraction concepts. But they often inaccurately 

described fraction concepts and struggled to rationalize how to apply part-whole explanations to 

more difficult concepts like proportional reasoning. Like teachers in the Moseley et al. (2007) 

study, teachers in this study’s district may also struggle to rationalize how to apply part-whole 

explanations to more difficult fraction topics such as ordering fractions with different numerators 

and different denominators. By contrast, Japanese teachers’ explanations of fraction concepts 

focused more on quantity relationships, which allowed them to more accurately explain more 

difficult mathematics concepts. In addition, Japanese teachers spend considerably more time on 

problem-solving procedures (that is, time per problem) than U.S. teachers, providing in-depth 

explanations for both concepts and procedures (U.S. Department of Education, 2003).  

Moseley et al.’s (2007) descriptive study helps to explain why many teachers in this 

study reported that they focused on procedural methods for assessing magnitude (e.g., cross-

multiplying). However, teaching procedures without concepts likely leaves students confused 

and unable to judge the accuracy of their answers (Kilpatrick et al., 2001; Rittle-Johnson & 

Siegler, 1998), as both conceptual and procedural knowledge are important for developing an 

understanding of fraction magnitude (e.g., Rittle-Johnson, Siegler, & Alibali, 2001). This is 
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especially true for students with risk for mathematics difficulties, since these students struggle 

with foundational mathematics skills such as addition and multiplication (e.g., Powell et al., 

2013). When students lack both procedural competence and conceptual knowledge, 

understanding fraction principles becomes substantially difficult. Based on evidence from the 

present study, we believe that the U.S. curriculum needs a stronger focus on quality explanations 

of both concepts and procedures and procedural explanations should be deeply rooted in 

concepts (rather than presented as mathematics “rules”) (Fuchs et al., 2008).  

Although the pattern of errors is unknown for a sample of average-achieving students (as 

these data were not collected), previous research (e.g., DeWolf & Vosniadou, 2011; Meert et al., 

2010; Stafylidou & Vosniadou, 2004) suggests that even average-achieving students struggle to 

assess fraction magnitude. This speaks to the importance of improving fraction instruction to 

benefit all students (Siegler et al., 2011). It is possible to reduce students’ tendency to operate 

with whole number bias (i.e., Fuchs et al., 2013, 2014, in press, submitted). However, more work 

must be done to achieve the standards goals of the CCSS (2013) and improve students’ 

conceptual understanding of fractions, especially for those at risk for mathematics difficulties.    

Limitations  

 Of course, this study must be viewed in light of limitations. First, this study examined 

only the differential predictability of two types of fraction understanding – part-whole 

understanding and accuracy of fraction-magnitude estimation. Although both represent important 

components of conceptual understanding of fractions (e.g., Kilpatrick et al., 2001) and help to 

explain individual differences in fraction skills (Hecht et al., 2003), there are also other important 

ways to interpret a fraction. These include defining a fraction as a ratio, which is a labeled 

relationship between two quantities (e.g., 3 out of 4 cars are blue); a quotient, which represents 
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the decimal value of a divided by b (e.g., ¾ = 0.75), or an operator, which represents the 

multiplicative properties of fractions and how a fraction can operate on another quantity (e.g., ¾ 

of 100 can represent the expression 
ଵ଴଴	௫	ଷ

ସ
 or ቀଵ଴଴

ସ
ቁ  The present study did not analyze these .(3	ݔ

constructs because they are not typically assessed or taught in fourth grade. This is not to say that 

these constructs are not important. But laying a foundation for students to understand fraction 

magnitude in the first year of focused instruction on fractions will likely better prepare them to 

consolidate the many interpretations of fractions in the later grades.  

 Second, we reported how teachers taught students fractions using a self-report survey. 

We did not conduct live observations in the classroom to determine whether what they reported 

was in line with how they were actually teaching fraction concepts. Therefore, these data must be 

viewed as an approximation of how these teachers taught fractions in their classroom.   

 Despite these limitations, results demonstrate the substantial difficulty at-risk students 

have with estimating fraction magnitude. Findings also shed light on the importance of 

incorporating fraction magnitude instruction into the curriculum. Previous intervention research 

(e.g., Cramer et al., 2002; Fuchs et al., 2013; Fuchs et al., 2014; Fuchs et al., 2015; Fuchs et al., 

in press) supports teaching students how to assess fraction magnitude with comparing strategies 

and the number line to significantly improve students’ conceptual understanding of fractions. In 

these cited studies, students were explicitly taught how to compare fractions, order fractions, and 

place fractions on the number line. Instruction also focused on constructing conceptual verbal 

explanations for how to complete these tasks. In the present study, the ability to accurately 

estimate fraction magnitude and explain comparison problems had a dramatic effect on reducing 

WN-ORs (i.e., whole number bias) among fourth-grade students at risk for developing 

mathematics difficulties. 
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Table 1 
 
Ordering errors coding form 
 
 

Student/Teacher/Cohort 
  Answer  Fraction Understanding Error 

Problem 
Correct = 1 

Incorrect = 0 WN WN-D WN-N SD-BF NC-WF NC DNA 

A.*    
ଵ

ଶ
		ହ
଼
		ଶ
଺
 0         1 1 2 3 4 5 6 7 

B.      
ଵ

ଶ
		ଵ
ହ
		 ଵ
ଵଶ

 0         1 1 2 3 4 5 6 7 

C.*    
ଷ

ଵ଴
		 ଻
ଵଶ
		ଵ
ଶ
 0         1 1 2 3 4 5 6 7 

D.*    
ଷ

ସ
		ଵ
ଶ
		ଶ
଼
 0         1 1 2 3 4 5 6 7 

E.       
ଵ

଼
		ଵ
ଷ
		ଵ
ଶ
 0         1 1 2 3 4 5 6 7 

F.       
ହ

ସ
		ଽ
଼
		଻
଺
 0         1 1 2 3 4 5 6 7 

G.       1 ସ

଺
		1 ସ

ଵଶ
		1 ସ

ଵ଴
 0         1 1 2 3 4 5 6 7 

H.*     
଻

ଵଶ
		ଵ଴
଺
		ଷ
ଶ
 0         1 1 2 3 4 5 6 7 

I.*       1 ଻

଼
	1	 ଶ

ଵ଴
		1 ଵ

ଶ
 0         1 1 2 3 4 5 6 7 

Note. WN = whole number; WN-D = whole number (denominator specific); WN-N: whole 
number (numerator specific); SDBF = smallest denominator – biggest fraction; NC-WF = no 
category errors where students wrote the wrong fractions or the same fraction twice; NC = no 
category errors (i.e., could not determine an error pattern); DNA = did not attempt. If an error is 
gray, that means that particular error could not occur on the problem.  
 
*Starred problems were only coded as SD-BF ordering errors if students also got Problems B, E, 
and D correct (i.e., the same numerator problems). Answering these problems correct indicates 
that students understand that as the denominator gets smaller, the parts get bigger. However, 
students failed to correctly address the value in the numerator for problems that have fractions 
with different numerators and different denominators. All errors were entered as a “1” for 
present and a “0” for absent.  
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Table 2 
 
Frequency of Correct Answers, Whole Number Ordering Errors, Smallest Denominator – Biggest Fraction Ordering Errors, No 
Category Errors, and Did Not Attempt Errors 
 

 Correct % WNa % SD-BFc % NCa % DNAa %

Cohort 1 
2011-2012 

116 15% 417 65% 52 13% 148 23% 23 4%

Cohort 2 
2012-2013 

137 21% 318 63% 75 22% 114 22% 4 1%

Cohort 3 
2013-2014 

126 20% 343 67% 63 20% 98 19% 9 2%

Across 
Cohorts 

379 
N = 2,043 

19% 1,078
n = 1,664

65%b 190
n = 1,050

18% 360
n = 1,664

22% 36
n = 1,664

2%

Note: WN = whole number ordering errors; SD-BF = smallest denominator – biggest fraction ordering errors; NC = no category errors 
(i.e., students wrote the wrong fractions or the same fraction twice or could not determine an error pattern); DNA = did not attempt.  
aIndicates the frequency of errors of the responses that had errors (i.e., subtracting correct answers from the denominator).  
b46% of whole number ordering errors included ordering the three fractions from least to greatest based on the whole number value in 
the denominator (e.g., ½<1/5<1/12); 33% of whole number ordering errors included ordering the three fractions from least to greatest 
based on the whole number values in the numerator and denominator (e.g., ½<2/6<5/8); 21% of whole number ordering errors 
included ordering the three fractions from least to greatest based on the whole number values in the numerator (e.g., ½<2/8<¾).  
cIndicates the frequency of SD-BF ordering errors of the responses that had errors (i.e., subtracting correct answers from the 
denominator). This error could only occur on five of the nine ordering problems.
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Table 3 
 
Proportions and Standard Deviations by Problem of Correct Answers, Whole Number Ordering Errors, Smallest Denominator – 
Biggest Fraction Ordering Errors, No Category Errors, and Did Not Attempt Errors  
 
 Correct WN SD-BFa NC DNA 
 Proportion (SD) Proportion (SD) Proportion (SD) Proportion (SD) Proportion (SD) 

Problem A 0.08 (0.02) 0.55 (0.03) 0.23 (0.03) 0.25 (0.03) <0.01 (<0.01) 

Problem B 0.34 (0.03) 0.77 (0.03)   0.28 (0.03) 0.02 (0.01) 

Problem C 0.07 (0.02) 0.52 (0.03) 0.25 (0.03) 0.25 (0.03) 0.01 (0.01) 

Problem D 0.10 (0.02) 0.59 (0.03) 0.14 (0.02) 0.28 (0.03) 0.01 (0.01) 

Problem E 0.37 (0.03) 0.81 (0.03)   0.20 (0.03) 0.03 (0.01) 

Problem F 0.27 (0.03) 0.82 (0.03)   0.19 (0.03) 0.02 (0.01) 

Problem G 0.31 (0.03) 0.81 (0.03)   0.24 (0.03) 0.04 (0.01) 

Problem H 0.05 (0.01) 0.60 (0.03) 0.13 (0.02) 0.31 (0.03) 0.02 (0.01) 

Problem I 0.07 (0.02) 0.53 (0.03) 0.17 (0.02) 0.35 (0.03) 0.03 (0.01) 

Note: WN = whole number ordering errors; SD-BF = smallest denominator – biggest fraction ordering errors; NC = no category errors 
(i.e., students wrote the wrong fractions or the same fraction twice or could not determine an error pattern); DNA = did not attempt. 
The proportion of correct answers was calculated by dividing the number of items correct by the number of students in the sample. To 
be consistent with all other analyses, the proportion of each error was calculated by dividing the number of times the error occurred on 
an item by the number of students in the sample, minus the number of problems correctly answered. This was to reflect the proportion 
of each error type of those responses that had errors. The standard deviation of the proportion was calculated using the following 

formula: SDproportion=ට
௦௔௠௣௟௘	௣௥௢௣௢௥௧௜௢௡	௫	ሺଵି	௦௔௠௣௟௘	௣௥௢௣௢௥௧௜௢௡ሻ

௦௔௠௣௟௘	௦௜௭௘
 

aSD-BF errors could only occur on five of the nine ordering problems.  
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Table 4  
 
Effect of Cohort on Accuracy, Whole Number Ordering Errors, and Smallest Denominator – Biggest Fraction Ordering Errors 
 
Outcome Fixed Effects γ SE z p Random effects Variance
Accuracy  (intercept) -3.97 0.64 -6.23 <.001
 Cohort 1 0.96 0.54 1.78 .075 Student 7.43
 Cohort 3 0.78 0.54 1.43 .152 Problem 1.89
  
WN ordering errors (intercept) 1.00 0.69 1.45 .148
 Cohort 1 -0.76 0.96 -0.78 .435 Student 23.98
 Cohort 3 0.54 0.97 0.58 .581 Problem 0.51
  
SD-BF ordering errors (intercept) -10.41 1.08 -9.61 <.001
 Cohort 1 0.74 1.12 0.66 .509 Student 134.89
 Cohort 3 0.47 1.16 0.41 .685 Problem 0.72
  
NC ordering errors (intercept) -2.22 0.31 -7.34 <.001
 Cohort 1 -0.07 0.35 -0.20 .844 Student 3.08
 Cohort 3 -0.48 0.36 -1.32 .186 Problem 0.26
 Note: WN = whole number; SD-BF = smallest denominator – biggest fraction; NC = no category; cohort 2 was the referent group 
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Table 5  
 
Effect of Part-Whole Understanding (i.e., NAEP Part-Whole Items) and Accuracy of Fraction-Magnitude Estimation (i.e., Number 
Line) on Accuracy and Errors 
 
Outcome Fixed Effects γ SE z p Random effects Variance
Accuracy (intercept) -3.53 0.55 -6.15 <.001
 NAEP_PW 0.61 0.15 4.17 <.001 Student 5.07
 NL 7.27 1.48 4.91 <.001 Problem 2.06
  
WN ordering errors (intercept) 0.95 0.47 2.00 .046
 NAEP_PW -0.50 0.29 -1.76 .079 Student 24.69
 NL -15.07 3.53 4.26 <.001 Problem 0.55
  
SD-BF ordering errors (intercept) -9.74 0.94 10.37 <.001
 NAEP_PW 0.58 0.42 1.39 .164 Student 113.47
 NL 5.08 3.91 1.30 .194 Problem .66
  
NC ordering errors (intercept) -2.40 0.24 -9.96 <.001
 NAEP_PW -0.05 0.10 -0.53 0.60 Student 3.10
 NL 2.01 1.15 1.75 0.08 Problem 0.26
Note: WN = whole number; SD-BF = smallest denominator – biggest fraction; NC = no category; NAEP_PW = NAEP part-whole 
items; NL = number line 
 
  



ORDERING ERRORS 

Table 6  
 
Effect of Students’ Explanations (Cohort 3 Only; n = 71) on Errors 
 
Outcome Fixed Effects γ SE z p Random effects Variance
Accuracy (intercept) -2.91 0.59 -4.97 <.001 Student 4.39
 Explanation 0.32 0.08 4.00 <.001 Problem 1.53
  
WN ordering errors (intercept) 4.74 2.09 2.27 .023 Student 111.23
 Explanation -1.44 0.45 -3.24 .001 Problem 3.38
  
SD-BF ordering errors (intercept) -8.13 1.178 -4.56 <.001 Student 85.62
 Explanation 0.66 0.36 1.84 .065 Problem 0.91
  
NC ordering errors (intercept) -2.91 0.42 -6.87 <.001 Student 4.53
 Explanation 0.02 0.08 0.28 0.78 Problem 0.15
Note: WN = whole number; SD-BF = smallest denominator – biggest fraction; NC = no category 


